Pore-Scale Study of Flow Rate on Colloid Attachment and Remobilization in a Saturated Micromodel.

نویسندگان

  • Qiulan Zhang
  • A Raoof
  • S M Hassanizadeh
چکیده

Colloid attachment is an important retention mechanism. It is influenced by colloid size, pore size, and flow rate, among other factors. In this work, we studied colloid attachment experimentally under various flow rates, as well as colloid release in response to a rapid change of flow rate. Colloid transport experiments under saturated conditions and with different flow rates were conducted in a physical micromodel. The micromodel was made of polydimethylsiloxane (PDMS), which is a hydrophobic polymer. Colloids were hydrophilic fluorescent carboxylate-modified polystyrene latex microspheres with a mean diameter of 300 nm. We could directly observe the movement of colloids within the pores using a confocal microscope. We also obtained concentration breakthrough curves by measuring the fluorescence intensity at the outlet of the micromodel. In addition, our experiments were simulated using a pore-network modeling, PoreFlow, based on the pore structure of the micromodel. Local colloid concentrations were calculated by solving local mass balance equations for all network elements and then averaging resulting concentrations over the whole micromodel. The measured breakthrough curves were successfully simulated using PoreFlow. Observed and calculated breakthrough curves showed that colloid attachment rate was smaller for larger flow rate. Temporally enhance colloid release (remobilization of attached colloids) was observed when the flow rate was increased by a factor of 10. But no colloid remobilization was observed when the flow rate decreased by a factor of 10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and Numerical Pore Scale Study of Residual Gas Saturation in Water/Gas Imbibition Phenomena

Residual gas saturation is one of the most important parameter in determining recovery factor of water-drive gas reservoir. Visual observation of processes occurring at the pore level in micromodels can give an insight to fluid displacements at the larger scale and also help the interpretation of production performance at reservoir scale. In this study experimental tests in a glass micromod...

متن کامل

Visualization and Modeling of Polystyrol Colloid Transport in a Silicon Micromodel

ventional methods to investigate colloid transport often involve column studies. Here, colloid concentrations are A new experimental approach and complementary model analysis measured at the column effluent or at selected points are presented for studying colloid transport and fate in porous media. The experimental approach combines high precision etching to create along the column length. Unfo...

متن کامل

Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.

Saturated packed column and micromodel transport studies were conducted to gain insight on mechanisms of colloid retention and release under unfavorable attachment conditions. The initial deposition of colloids in porous media was found to be a strongly coupled process that depended on solution chemistry and pore space geometry. During steady state chemical conditions, colloid deposition was no...

متن کامل

Modeling colloid attachment, straining, and exclusion in saturated porous media.

A conceptual model for colloid transport is developed that accounts for colloid attachment straining, and exclusion. Colloid attachment and detachment is modeled using first-order rate expressions, whereas straining is described using an irreversible first-order straining term that is depth dependent. Exclusion is modeled by adjusting transport parameters for colloid-accessible pore space. Fitt...

متن کامل

Visualization of biocolloid transport processes at the pore scale under saturated and unsaturated conditions

Field and columns studies of biocolloid transport in porous media have yielded a large body of information, used to design treatment systems, protect water supplies and assess the risk of pathogen contamination. However, the inherent “black-box” approach of these larger scales has resulted in generalizations that sometimes prove inaccurate. Over the past 10 to 15 years, pore scale visualization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of environmental quality

دوره 44 5  شماره 

صفحات  -

تاریخ انتشار 2015